Certain invariant spaces of bounded measurable functions on a sphere
نویسندگان
چکیده
In their 1976 paper, Nagel and Rudin characterize the closed unitarily Möbius invariant spaces of continuous $$L^p$$ -functions on a sphere, for $$1\le p<\infty $$ . this paper we provide an analogous characterization weak*-closed $$L^\infty sphere. We also investigate algebras
منابع مشابه
Invariant Means on Spaces of Continuous or Measurable Functions ( )
1. Introduction. Invariant means on spaces of functions have been studied by von Neumann [ 7], Banach [ 2], Day [ 4], [5] and others. Day's Amenable semigroups [5] presents a comprehensive summary of the earlier work and many new results. Let 2 be an abstract group or semigroup and ret (2) the Banach space of all bounded real-valued functions on 2 with the supremum norm. A mean on rei(2) is a p...
متن کاملDiagonal operators on spaces of measurable functions
© Mémoires de la S. M. F., 1972, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http:// smf.emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...
متن کاملOn a Metric on Translation Invariant Spaces
In this paper we de ne a metric on the collection of all translation invarinat spaces on a locally compact abelian group and we study some properties of the metric space.
متن کاملCompact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Positivity
سال: 2021
ISSN: ['1572-9281', '1385-1292']
DOI: https://doi.org/10.1007/s11117-021-00862-1