Certain invariant spaces of bounded measurable functions on a sphere

نویسندگان

چکیده

In their 1976 paper, Nagel and Rudin characterize the closed unitarily Möbius invariant spaces of continuous $$L^p$$ -functions on a sphere, for $$1\le p<\infty $$ . this paper we provide an analogous characterization weak*-closed $$L^\infty sphere. We also investigate algebras

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Means on Spaces of Continuous or Measurable Functions ( )

1. Introduction. Invariant means on spaces of functions have been studied by von Neumann [ 7], Banach [ 2], Day [ 4], [5] and others. Day's Amenable semigroups [5] presents a comprehensive summary of the earlier work and many new results. Let 2 be an abstract group or semigroup and ret (2) the Banach space of all bounded real-valued functions on 2 with the supremum norm. A mean on rei(2) is a p...

متن کامل

Diagonal operators on spaces of measurable functions

© Mémoires de la S. M. F., 1972, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http:// smf.emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...

متن کامل

On a Metric on Translation Invariant Spaces

In this paper we de ne a metric on the collection of all translation invarinat spaces on a locally compact abelian group and we study some properties of the metric space.

متن کامل

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Positivity

سال: 2021

ISSN: ['1572-9281', '1385-1292']

DOI: https://doi.org/10.1007/s11117-021-00862-1